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Abstract—Polypropylene (PP)-based recyclable materials have
attracted tremendous interest for HVDC cable insulation applica-
tions due to their superior electrical properties, e.g., high thermal
stability and superior recyclability. Compared with crosslinked
polyethylene (XLPE), PP-based materials exhibit the advantages
of not only higher working temperatures but also facile and
efficient cable manufacturing with reduced costs, which are
highly desirable in HVDC cable manufacturing. Considering
their promising advantages, PP-based materials have received
significant attention from both academia and industry in the
field of HVDC cable insulation. In order to adopt PP as a
cable insulation material, the mechanical flexibility of PP should
be improved. However, regulations of the mechanical properties
inevitably influences the electrical properties of PP. So extensive
research has been conducted on the regulation of the mechanical
and electrical properties of PP. This review summarizes the
research progress on recyclable PP-based materials for HVDC
cable insulation applications. Particular attention is placed on the
electrical property regulations and material structure-property
relationships. The challenges that remain to be addressed and the
opportunities for future studies on PP-based recyclable HVDC
cable insulation materials are also presented.

Index Terms—polypropylene, HVDC cable, dielectric
materials, recyclable insulation materials.

I. INTRODUCTION

W ITH the development of UHV power transmission,
more and more HV power transmission lines are under

construction or will be constructed [1]–[4], for example, about
800,000 km of UHV transmission lines will be constructed in
China [5]–[7]. Most of these transmission lines are overhead
transmission lines. However, there are several limitations of
overhead transmission lines, such as the adverse impact on
the landscape and natural environment along the transmission
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lines, the compression of human living space because of
the complicated electromagnetic environment, as well as the
vulnerability to natural disasters (e.g., lightning and icing).
Considering the aforementioned limitations, some changes
should be made in power transmission methods. Underground
cable power transmission is an excellent option to solve these
problems. The flexible HVDC power transmission is also the
main direction advocated by CIGRE [8]. Moreover, offshore
wind power sending and marine resource utilization also call
for cross-sea large capacity electric power transmission [9].
For such applications, HVAC cable power transmission is not
a good choice because of the large capacitive current which
severely reduces the power transmission efficiency [10]. So
HVDC cable power transmission is almost the only choice.
Also, in some large cities, there is not enough space to build
new overhead transmission lines. Indeed, some large cities in
China have proposed a plan to build underground pipe galleries
to accommodate electric power transmission, gas transmission,
information transmission and underground railways to save
the scarce land resources [11]–[13]. Considering these urgent
demands, large capacity HVDC power cables should be de-
veloped.

The development of polymeric cable insulation materials
has gone through several stages, including natural rubber,
polyvinyl chloride, synthetic rubber (butyl rubber and ethylene
propylene rubber), polyethylene, and crosslinked polyethylene
(XLPE) [14]–[21]. Since the 1950s, low density polyethylene
(LDPE) has been used in MV and HV cables because of its
excellent insulation properties, simple processing technology
and good flexibility. However, the poor thermal properties
restrict the further application of LDPE in high voltage
large capacity power cables. In order to improve the poor
mechanical properties of LDPE at high temperatures, LDPE
is crosslinked. After crosslinking, the thermoplastic LDPE is
transformed into thermoset XLPE, and the heat resistance of
XLPE is greatly improved. The long-term operation tempera-
tures of XLPE cables can reach 90 ◦C in HVAC cables [22].
Although XLPE has been used as cable insulation material
for about 60 years [23], there are some issues with XLPE.
First, XLPE is a thermoset material which is difficult to be
recycled. Traditional methods of disposing used XLPE are
burning, pyrolysis or burying underground, which not only
consume a lot of energy, but also have a negative impact
on the environment. Second, the crosslinking and degassing
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process in XLPE manufacturing is very complicated and
requires precise control. These processes also result in long
production time, which is estimated to be 5–10 times longer
than that of thermoplastic materials. Third, the crosslinking
by-products are always a problem in XLPE insulation, which
can easily introduce microdefects and cause serious space
charge accumulation under the DC electric field [24]–[26].
In view of the above shortcomings, XLPE can neither meet
the requirements of large-capacity HVDC cables, nor can it
meet the requirements of sustainable development. Therefore,
it is urgent to develop high-performance recyclable thermo-
plastic HVDC cable insulation materials to replace XLPE and
meet the requirements of large-capacity HVDC cable power
transmission.

Recyclable HVDC cables use thermoplastic materials as the
insulation materials, which do not require any crosslinking
process, thereby completely avoiding the adverse influence
of crosslinking by-products [27]–[29]. The thermoplastic in-
sulations can also be recycled after service, which not only
has significant technical advantages, but also has considerable
economic benefits. A CIGRE working group has compared the
cost of thermoplastic insulation and XLPE [30]. The results
show that the cost of thermoplastic material can be reduced
by 14% compared with XLPE. The overall cost of the cable
system can be reduced by 17% and the carbon emission during
cable manufacturing can be reduced by 20% when using
thermoplastic materials instead of XLPE.

The development of recyclable cable insulation materials
has become the forefront of power cable academia and in-
dustry studies [31]–[34]. At present, the main technical routes
to develop recyclable cable insulation materials include the
blending of LDPE and high-density polyethylene (HDPE),
and the blending of polyethylene (PE) and polypropylene
(PP). Among the proposed methods, PP-based materials are
promising because of their high operation temperature (i.e.,
above 110 ◦C) and excellent insulation performance compared
with XLPE. Prysmian developed a PP-based thermoplastic
HVDC cable prototype in 2015 [35]. In recent years, research
on recyclable cable insulation materials have been extensively
conducted worldwide [36]. In particular, researchers in China
have obtained relatively mature PP-based recyclable cable
insulation material, and the trial production of PP-insulated
HV cable has been carried out.

II. RECYCLABLE POLYPROPYLENE INSULATION
MATERIAL

PP is obtained by the polymerization of propylene monomer.
The polymerization process and the chemical structure of PP
are shown in Fig. 1.
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Fig. 1. Polymerization process and chemical structure of polypropylene.

Due to the presence of the methyl group in propylene
(the red area in Fig. 1), PP can be classified into three
different configurations according to the position of the methyl
groups, isotactic polypropylene (iPP), syndiotactic polypropy-
lene (sPP) and atactic polypropylene (aPP). The structures of
the three different PPs are shown in Fig. 2, the methyl groups
in iPP are located on the same side of the main polymer chain,
while the methyl groups in sPP are alternatively located on
both sides of the main polymer chain. In addition, the methyl
groups are randomly located on both sides of the main polymer
chain in aPP.
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Fig. 2. Polypropylene with different structures, (a) isotactic polypropylene,
(b) syndiotactic polypropylene and (c) atactic polypropylene.

Due to their different structures, the properties of iPP, sPP
and aPP are quite different. iPP is a semi-crystalline polymer
with a melting temperature of about 165 ◦C and the long-
term operation temperature is about 130 ◦C. iPP possesses
excellent heat resistance and insulation properties, but poor
mechanical flexibility at low temperatures. More than 90% of
PP in industrial production and applications are iPP. sPP is also
a semi-crystalline polymer with a melting temperature of about
135 ◦C. Because of the relatively good mechanical flexibility
and excellent insulation performance, sPP has been regarded
as a potential recyclable cable insulation material and has
been previously studied. K. Yoshino et al. have developed a
model cable based on sPP, which exhibits higher performance
than XLPE insulation [37], [38]. However, since the methyl
groups in sPP are alternatively located on both sides of the
main polymer chain, the polymerization of sPP is difficult and
expensive, which limits the application of sPP. In addition,
the lower melting temperature of sPP (i.e., 135 ◦C) restricts
the operation temperature of sPP-insulated cables, so it is
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difficult to raise the capacity of sPP-based cables. As for
amorphous aPP, it has not been extensively used because of
its low molecular weight, poor mechanical properties and low
temperature resistance.

Considering the insulation performance, operation temper-
ature and material cost, iPP is an ideal recyclable DC cable
insulation material. Table I lists the performance of commonly
used polymeric cable insulation materials. Compared with
other materials, PP exhibits stronger temperature resistance,
higher volume resistivity and breakdown strength, indicating
that PP is more suitable for large-capacity HVDC cable
insulation applications.

TABLE I
ELECTRICAL PERFORMANCE OF COMMONLY USED

INSULATION MATERIALS

Material εr ρ (Ω·m) Eb (kV/mm) Tm (◦C)
XLPE [36] 2.3 0.9 × 1015 300 105 (softening)
LDPE [39] 2.2 3.1 × 1015 345 108
HDPE [39] 2.3 2.2 × 1015 450 132
LDPE/HDPE [40] 2.2 3.2 × 1015 450 115
PP [29] 2.3 2.2 × 1016 400–600 165

εr: dielectric constant, ρ: DC volume resistivity, Eb: DC breakdown strength,
Tm: melting temperature.

However, the mechanical flexibility, especially the brittle-
ness at low temperature of PP should be improved to meet the
demand of cable applications. To solve this problem, many
methods have been adopted to regulate the mechanical prop-
erties of PP, such as blending with thermoplastic elastomers
(i.e., ethylene propylene diene monomer (EPDM) and poly-
styrene-ethylene-butylene-styrene (SEBS)) and copolymeriza-
tion with other olefins [41]–[44]. Although these methods can
readily regulate the mechanical properties of PP, the electrical
properties are often deteriorated. To realize the comprehensive
performance regulation of PP, it is more important to further
enhance the electrical properties of PP, especially at high tem-
peratures. For DC cable insulation applications, space charge
accumulation is a big threat. Particularly, with the increased
working temperature of PP, space charge accumulation and
insulation performance deterioration under high temperatures
are the main problems for the electrical property regulation of
PP-based recyclable insulation materials.

III. METHODS FOR ELECTRICAL PROPERTY REGULATION
OF POLYPROPYLENE

Recently, PP has become a hot topic in the research of
recyclable HVDC cable insulation materials for its remarkable
performance. A series of methods for regulating the elec-
trical property of PP-based insulation materials have been
developed, including: (1) nucleating agent modification, (2)
copolymerizing modification (3) blending modification, (4)
chemical grafting modification, and (5) nanocomposite mod-
ification. These regulation methods are reviewed in detail in
the following sub-sections.

The aggregation structure of PP plays an important role in
charge carrier transport, thus affecting the electrical properties
of PP. PP is a semi-crystalline polymer, in which the crys-
tallization phase and amorphous phase coexist. The electrical

breakdown strength of the amorphous phase is significantly
lower than that of the crystallization phase. Therefore, the
electrical breakdown process of PP often occurs along the
spherulite boundaries. Therefore, larger spherulite with distinct
boundaries would result in decreased electrical breakdown
strength [45]. So, reducing the spherulite size and increasing
the spherulite number can effectively improve the electrical
properties of PP. Based on controlling the aggregation structure
of PP, a series of electrical property regulation strategies have
been developed, including the addition of nucleating agents,
copolymerization with other olefin monomers, and blending
with other thermoplastic polyolefins.

A. Nucleating Agent Modification of Polypropylene

Isotactic PP can crystallize into monoclinic- (α), trigonal-
(β) and orthorhombic- (γ) phases. The three types of crystal
phases have significant differences in melting point, density,
and electrical properties. Under normal processing conditions,
PP is in α-phase. However, the α-phase can be artificially
converted into β-phase by adding nucleating agents. Zha et al.
added β nucleating agent N,N ′-dicyclohexylterephthalamide
(DCTH) to convert iPP from α-phase to β-phase, and studied
the effect of the crystal phase on the space charge and trap
level distribution in iPP (Fig. 3). The results show that the β-
phase can introduce deep charge traps and then reduce the
charge carrier mobility and inhibit the space charge accu-
mulation, which finally improve the electrical performance
of iPP [46]. Zhou et al. also obtained similar results using
aryl amide derivative (TMB-5) as the β nucleating agent,
which achieves improved DC breakdown strength and space
charge suppression under 100 kV/mm in iPP at room tem-
perature [47], [48]. However, it should be noted that the
nucleating agents are mostly small organic molecules or or-
ganic salts, which may migrate or even directly ionize under
high temperatures and high electric fields [49], resulting in
space charge accumulation and the deterioration of electrical
properties under high temperatures and high electric fields.
Also, it is necessary to further evaluate the long-term stability
of the induced β-phase under thermal cycling.

B. Copolymerizing Modification of Polypropylene

By copolymerizing with other olefin monomers, the elec-
trical properties of PP copolymers can be regulated. Common
monomers include ethylene, butane and styrene. Copolymer-
ized PP can be classified into homopolymer, block copolymer
and random copolymer according to the type and spatial ar-
rangement of the monomers [50]. The molecular structures of
different copolymers are shown in Fig. 4a. Meng et al. studied
the influence of copolymerization structure on the electrical
properties of PP copolymers by comparing four different PP
copolymers [51]. The results show that compared with block
copolymer, the random copolymer exhibits higher mechanical
flexibility and more excellent electrical properties, which is
more appropriate for HVDC cable insulation (Fig. 4b-e). Xu
et al. compared the microstructure and electrical properties
of homopolymer and block copolymer of PP [52], and found
that the ethylene-rich segments in block copolymer may act as
nucleation agents, which accelerate the crystallization process
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Fig. 3. Structure and electrical properties of the polypropylene with induced β phase. (a) X-ray diffraction patterns, (b) trap level distributions, (c) electrical
conduction current, (d) DC breakdown strength of iPP with 0.05 wt. % and 0.1 wt. % DCTH. Reproduced with permission [46]. Copyright 2015, AIP
Publishing LLC.

and reduce the spherulite size of PP, thereby improving the
electrical properties. I. L. Hosier et al. studied the effect
of ethylene monomer content on the breakdown strength of
ethylene-propylene copolymers [53] and found that high ethy-
lene content reduces the breakdown strength of the copolymers
at high temperature. Although the electrical properties of PP
can be improved by copolymerization, it is complicated to
precisely control the composition and chemical structure of the
copolymers. So present research on PP copolymers is primarily
based on the commercial available materials, which restricts
further investigations.

C. Blending Modification of Polypropylene

Compared with copolymerization, blending is a more prac-
tical approach in industrial applications to regulate the prop-
erties of polymers. The aggregation structure of PP can also
be regulated by blending with other thermoplastic polyolefins.
Dang et al. prepared PP/elastomer blends with different elas-
tomers [54], and then studied the effect of elastomer type
on the aggregation structure and electrical properties of PP.
The results show that the good compatibility between PP and
propylene-based elastomer can reduce the spherulite size and
increase the spherulite density of PP, which leads to higher
DC volume resistivity in PP/propylene-based elastomer blends

compared with PP/ethylene-based elastomer blends (Fig. 5).
However, the low operation temperature of the thermoplastic
elastomer results in degraded electrical performance of the
blends compared with pristine PP at high temperatures. Gao
et al. also compared the effect of elastomer types on the elec-
trical properties of PP, and obtained a similar conclusion [55].
The compatibility between the thermoplastic polyolefin and
PP has a significant effect on the properties of the blends.
The synergetic performance improvement can only be obtained
when the interfaces of the two phases are fully combined.
Therefore, the selection of the thermoplastic polyolefin is
particularly important in the blending modification of PP [56].
Moreover, some other methods, such as adding compatibilizer
and copolymerization, have also shown the potential to im-
prove the compatibility between elastomer and PP matrix [57],
[58]. Compared with PP, the thermoplastic elastomers usu-
ally show lower melting temperatures. The different thermal
properties of PP and elastomer would cause phase separation
under long-term high-temperature operations, which forms PP-
rich or elastomer-rich regions inside the PP-based blends.
Such phase separation may deteriorate the long-term electrical
performance of PP-based blends. Therefore, phase separation
during long-term high-temperature operations is still a key
issue for PP-based blends in DC cable insulation applications
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Fig. 4. Structures and electric properties of PP-based copolymers. (a) Structures of different polypropylene copolymers, (b) tensile stress-strain curves,
(c) storage modulus from DMA tests, (d) DC leakage current and (e) DC breakdown strength of different polypropylene copolymers. Reproduced with
permission [51]. Copyright 2019, IEEE.

and needs to be further investigated.

D. Chemical Grafting Modification of Polypropylene

Grafting polar functional groups onto the non-polar polymer
chains is an effective way to regulate the charge transport
characteristics and enhance the electrical properties of poly-
mers. Chemical grafting modification has been used in XLPE
insulation. It has been shown that grafting maleic anhydride
can inhibit space charge accumulation by 50%–70% in XLPE.
Other polar groups, e.g., carbonyl, nitro, cyano, aromatic rings
and saturated aliphatic acids, can also increase the volume re-
sistivity of PE and other α-polyolefins [59]–[63]. The physical
mechanism of the enhanced electrical performance in grafted
polymers is that the grafted polar groups could introduce deep
traps. The deep traps may capture the charge carriers and
reduce the charge carrier mobility, leading to increased volume
resistivity and DC breakdown strength, as well as suppressed
space charge accumulation.

Our research group has grafted maleic anhydride (mah),

which contains a carbonyl group, onto the molecule chain
of PP by melt grafting [64]. With the grafting of mah,
the breakdown strength of PP increases by 13.5%, and the
space charge injection threshold electric field increases from
33.5 kV/mm of pristine PP to 46.7 kV/mm of PP-g-mah.
The results of thermally stimulation current test show that the
grafted mah group introduces a large amount of deep traps
with the trap level of 0.7–1.0 eV in PP, and the trap level
density increases by 4.4 times. The introduced deep traps are
responsible for the inhibition of homocharge injection and
accumulation. To further reveal the origins of deep traps in
grafted polymers, our research group simulated the electronic
band structure and 3D electric potential distribution in PP and
styrene grafted polypropylene (PP-g-St) [65]. It shows that
the different electronic band structure of the grafted polymer
compared with the pristine polymer is responsible for the
introduction of deep traps in grafted polymers (Fig. 6). By
carefully choosing the grafted groups to optimize the band
structure of the grafted polymers, the electrical properties
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can be further regulated, which provides a pathway for the
structure design of high performance HVDC cable insulation
materials.

Zha et al. studied the effect of different maleic anhydride
grafting contents on the microstructure and electrical proper-
ties of PP [66]. It was found that grafting maleic anhydride
changes the aggregation structure of PP and reduces the
spherulite size. The polar groups inhibit the space charge
accumulation by changing the trap level distribution. When
the grafted maleic anhydride content is 2%, the temperature
dependence of the volume resistivity of PP can be significantly
weakened.

Although chemical grafting of polar groups can improve
the electrical properties of PP, the grafting process is usually
carried out by melt extrusion and initialed by initiators (gen-
erally peroxide, e.g., dicumyl peroxide). Using such a grafting
process may result in the degradation of PP. Also, the residual

initiators and the by-products of the grafting reaction are
detrimental to the electrical properties of PP. For the reasons
aforementioned, the chemical grafting process needs further
optimization.

E. Nanocomposite Modification of Polypropylene

As the new generation insulation materials, nanocomposite
dielectrics show great advantages in improving the electrical
properties of polymer insulation, such as breakdown strength,
volume resistivity, corona aging lifetime, space charge ac-
cumulation, partial discharge, dielectric loss and electrical
treeing [67]–[72]. Nanocomposite dielectrics have been exten-
sively studied in various insulation materials, such as LDPE,
XLPE, epoxy resin, silicone rubber, and ethylene-propylene
rubber [73]–[77]. With the development of recyclable PP insu-
lation, extensive studies have been carried out on the PP-based
nanocomposites to improve the electrical properties [78]–[83].
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Our group modified iPP with the surface-modified MgO
nanoparticles [84]–[87] and found that MgO nanoparticles can
introduce deep traps at the interfaces between the nanoparticles
and the PP matrix to suppress the homocharge injection
from the electrodes. The nanocomposites with 3 phr MgO
nanoparticles exhibit the highest DC breakdown strength,
which is 29% higher than that of pure PP, indicating that
the nanocomposite can significantly improve the electrical
properties of PP, which expands the application of polymer
nanocomposites in recyclable PP insulation (Fig. 7).

The dielectric properties of nanocomposites are closely
related to the dispersion and distribution of the nanoparticles.
Generally, inorganic nanoparticles and organic polymers are
incompatible, so it is necessary to surface-modify the nanopar-
ticles to improve the compatibility and promote the dispersion
of the nanoparticles. Jiao et al. used different silane coupling
agents to modify SiO2 nanoparticles and prepared PP/SiO2

nanocomposites [88]. The results show that the interfacial
structures formed by different silane coupling agents have
important influence on the nanoparticle dispersion and electri-
cal properties of the nanocomposites. That is, promoting the
dispersion of the nanoparticles can significantly suppress the
space charge accumulation. The SiO2 nanoparticles surface-
modified with polydimethylsiloxane result in the minimal
space charge accumulation. L. S. Schadler et al. studied the
electrical properties of PP nanocomposites with SiO2 nanopar-
ticles modified with anthracene and polymethacrylate [89].
The effect of grafting density and molecular chain lengths
of polymethacrylates on the nanoparticle dispersion were dis-
cussed, which shows that the polymethacrylate-modified SiO2

nanoparticles have better dispersion in PP, and the correspond-
ing DC breakdown strength of the PP/SiO2 nanocomposite
can be increased by 33%. He et al. investigated the effect of
nanoparticles surface modification with different alkyl silane
agents on the electrical properties of PP/MgO nanocompos-

ites [90]. The results indicate that different alkyl groups in
the silane agent may influence the trap level distribution of
the nanocomposites, thereby affecting the electrical properties.
The PP nanocomposite with octyltrimethoxysilane surface-
modified MgO nanoparticles shows the highest trap level
density and the best comprehensive electrical properties.

In order to combine the advantages of introducing
polar groups and nanoparticles, Zhou et al. introduced
polypropylene-graft-maleic anhydride (PP-g-mah) surface
modified MgO nanoparticles into PP [91]. The PP-g-mah not
only benefits from the uniform dispersion of nanoparticles
by the similar physical and chemical properties of PP-g-
mah and PP, but also increases deep charge trapping sites
by the polar groups in PP-g-mah. The resultant PP-based
nanocomposites show superior electrical insulation properties
with enhanced resistivity and breakdown strength. To directly
reveal the effects of interfacial regulation, the Kelvin probe
force microscopy (KPFM) technology with nanoscale spatial
resolution is developed to probe the interfacial trap distribution
using a nano-isothermal surface potential decay (nano-ISPD)
method. It is shown that with the surface modification of PP-
g-mah, more deep traps are introduced at the interfacial region
(Fig. 8).

In addition to conventional nanoparticles, e.g., MgO, SiO2,
TiO2, Al2O3, and ZnO, some new types of nanoparticles with
specific functions, such as fullerene and nano-scaled meso-
porous nanoparticles, are introduced into PP nanocomposites.
Dang et al. utilized the high electron affinity of fullerene
to introduce deep traps in PP [92], which achieves effective
space charge suppression at very low doping content (i.e., 0.1
wt%) and increases the volume resistivity of PP by nearly
an order of magnitude. Yang et al. carried out a structural
design to load polyethyleneimine (PEI), which can capture the
degradation products during electric tree growth, into nano-
sized mesoporous SiO2 [93]. With the introduction of such
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Fig. 7. Electrical properties of polypropylene nanocomposites with different nanoparticles. (a)-(d) space charge distribution under 60 kV/mm DC electric
field, (e) accumulated space charge amount, (f) electric field distortion factor, (g) DC volume resistivity under 60 kV/mm, (h) Weibull characteristic breakdown
strength. Reproduced with permission [87]. Copyright 2017, IEEE.

nanoparticles, the DC breakdown strength of PP increases by
16 %, and the electric tree growth is delayed by 5 times as
the result of capturing the electrical degradation products by
the loaded PEI.

It is worth noting that deep traps play an important role
in regulating the electrical properties of PP, but the origins
of deep traps introduced by different regulation methods are
still under investigation. It has been shown that deep traps can

be introduced at the crystal/amorphous interface by changing
the crystallization of PP [86]. Moreover, deep traps can be
introduced by the functional group grafting and the interface
of the nanoparticles [65]. The characteristics of these deep
traps should be further studied to reveal the mechanism of
the electrical performance enhancement. In addition, the afore-
mentioned modification methods by nanocomposite to improve
the electrical properties of PP are still in the initial stage. The
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permission [91]. Copyright 2020, Elsevier B.V.

characterization of the electrical properties is primarily carried
out at room temperature. Since one of the advantages of re-
cyclable PP insulation is the improved operation temperature,
the effects of high temperature and long-term stability of the
PP-based nanocomposites should be further studied. Moreover,
scale-up and robust production of the nanocomposites should
be further developed to produce large-scale and high-quality
nanocomposites.

IV. CONCLUSION AND PERSPECTIVE

Recyclable polymeric materials, e.g., polypropylene, have
shown significant advantages in HVDC cable insulation ap-

plications, including environmental-friendliness, high temper-
ature resistance and strong dielectric properties, and are exten-
sively expected to serve as the next generation HVDC cable
insulation material to replace XLPE. Exciting achievements
have been made in the field of recyclable HVDC cable
insulation material in recent years. To promote the research
and application of recyclable HVDC cable insulation material,
there are still some key points that need to be noted and further
studied.

1) High-performance insulation materials with co-optimized
mechanical and electrical properties, which fulfill the re-
quirements in cable manufacturing, installation and operation,
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should be developed. The developed material must satisfy
various demands, including mechanical flexibility, high tem-
perature integrity, low temperature resistivity and excellent
electrical properties. Especially for higher DC voltage level
and higher operation temperature, the enhanced electrical
properties and insulating performance need to be further
investigated.

2) Related studies so far have shown that the nanocomposite
regulation of the electrical properties is strongly related to
the microscopic interface characteristics between the nanopar-
ticles and polymer matrix. Some models of the interfacial
interaction between nanoparticles and polymer matrix have
been established to explain the enhanced electrical properties
in the nanocomposites [94], [95], whereas the validity of these
models should be comprehensively and carefully verified.
Therefore, the in-depth mechanisms, especially at nanoscale,
still need to be further studied. Based on the insightful under-
standing of the interfaces, the electrical property regulation
methods can be established to guide the material structure
design.

3) Space charge characteristics, including charge origina-
tion, transport, accumulation and dissipation, play an essential
role in determining the electrical performance of the insula-
tion material operating under DC electric field, particularly
at high temperatures. The space charge accumulation can
directly affect the conductivity, breakdown strength and long-
term reliability of the DC insulation materials. Space charge
behavior is also a vital issue in HVDC cable operation, which
is connected to the lifetime and reliability of the cable. So,
the space charge behavior in recyclable PP-based HVDC ca-
ble insulation materials should be systematically investigated,
especially at high temperatures.

4) In addition to nanocomposite, other modification meth-
ods should be researched and developed. Compared with
nanocomposite, chemical grafting modification avoids the
problems associated with nanoparticle aggregation, which has
shown promising potential in the development of high perfor-
mance recyclable HVDC cable insulation materials. In-depth
fundamental research should be carried out on the relationship
between the chemical structure and physical properties, which
can provide guidance on the rational material structure design.
Computational simulation, as well as machine learning and big
data technology, can further assist the material structure design
process.

5) The overall performance of PP-based HVDC cable insu-
lation material under extreme operation conditions needs to
be investigated. The performance and lifetime of PP-based
insulation materials should be comprehensively evaluated to
assist with the design and manufacturing of PP-based HVDC
cables.

With the increasing demand on HVDC cable power trans-
mission, the extruded polymeric HVDC cables should play
a more important role in the future power grid. Considering
the advantages of PP-based materials, the recyclable PP-based
insulation materials should have promising potential in future
HVDC cable insulation materials.
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