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Abstract—Demand response has been recognized as a valuable
functionality of power systems for mitigating power imbalances.
This paper proposes a hierarchical control strategy among the
distribution system operator (DSO), load aggregators (LAs), and
thermostatically controlled loads (TCLs); the strategy includes
a scheduling layer and an executive layer to provide load
regulation. In the scheduling layer, the DSO (leader) offers
compensation price (CP) strategies, and the LAs (followers)
respond to CP strategies with available regulation power (ARP)
strategies. Profits of the DSO and LAs are modeled according to
their behaviors during the load regulation process. Stackelberg
game is adopted to capture interactions among the players and
leader and to obtain the optimal strategy for each participant to
achieve utility. Moreover, considering inevitable random factors
in practice, e.g., renewable generation and behavior of users,
two different stochastic models based on sample average approx-
imation (SAA) and parameter modification are formulated with
improved scheduling accuracy. In the executive layer, distributed
TCLs are triggered based on strategies determined in the
scheduling layer. A self-triggering method that does not violate
user privacy is presented, where TCLs receive external signals
from the LA and independently determine whether to alter
their operation statuses. Numerical simulations are performed
on the modified IEEE-24 bus system to verify effectiveness of
the proposed strategy.

Index Terms—Demand response, hierarchical control, load
regulation, self-triggering method, Stackelberg game.

NOMENCLATURE

A. Indices and Sets

λiDR CP strategies offered by the DSO to LAi.
P i

DR ARP strategies of LAi.
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ΩDSO Feasible CP strategy set offered by the DSO to
LAs.

ΩiLA Feasible ARP strategy set of LAi.
t Control moment index; t ∈ T .
i LA index; i ∈ I.
s Scenario index; s ∈ S.
T Set of t.
I Set of i.
S Set of s.

B. Variables

λi,tDR CP strategy for LAi set by the DSO at time t.
P i,tDR ARP strategy of LAi at time t.
UDSO Utility function of the DSO.
U iLA Utility function of LAi.
Û tDSO Utility function of the DSO in the SAA model at

time t.
Û i,tLA Utility function of LAi in the SAA model at time t.
Ũ tDSO Utility function of the DSO in the simplified model

at time t.

I. INTRODUCTION

CONVENTIONAL power systems are undergoing dra-
matic changes due to high penetration of renewable

energy sources and various energy usage patterns, which
may cause large fluctuations between supply and demand [1].
Hence, the distribution system operator (DSO) faces a major
challenge with respect to managing active networks supporting
local balancing [2]. Considering future smart grids will transi-
tion from the paradigm of supply-follow-demand to demand-
follow-supply [3], demand response (DR) is becoming a com-
petitive approach to accommodate the growing integration of
renewable generation with volatilities and uncertainties by op-
erating controllable demand to provide ancillary services [4].
This idea dates back to the 1980 s and has been tested by
the Pacific Northwest National Laboratory in a demonstration
project [5]. Widely used thermostatically controlled loads
(TCLs) are indispensable DR resources; they have become
popular because of their high power ratings and thermal inertia
characteristics [6], [7].

TCLs can provide different load regulation performances to
satisfy varying control requirements under different scenarios.
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In terms of short-term control, e.g., frequency regulation,
response speed of TCLs is more important. TCLs were indi-
cated to be able to offer large power capacity and achieve an
instantaneous frequency response service in [8]. A hierarchical
decentralized control framework of TCLs was proposed in [9]
to provide rapid primary frequency regulation. Furthermore,
a TCL strategy for secondary frequency regulation was pro-
posed in [10], where a recovery method was also considered
to prevent power rebounds. In terms of medium/long-term
regulation, e.g., peak-shaving and power fluctuation compen-
sation, DR needs to sustain stable regulation performance
over a long scheduling horizon. A highly accurate aggregate
model was developed for TCLs in [11] to provide peak
load reduction. The study in [12] suggested an intelligent
load shedding performance could be realized through active
participation of TCLs. Decentralized and centralized model
predictive control strategies have been formulated for TCLs
to balance fluctuations in solar power generation [13]. In [14],
TCLs were aggregated as a virtual generator and two batteries
for smoothing wind power generation. According to literature,
TCLs can undertake medium/long-term power regulation, but
economic considerations are also essential during such a
regulation process. Nevertheless, direct involvement of small-
scale TCLs in wholesale market bidding is not feasible due to
the large number of TCLs.

The emergence of load aggregators (LAs) offers a solution
to this problem because LAs can act as agents for small or
medium-sized TCLs in the electricity market [15]. Hence, the
DSO only needs to trade with LAs instead of a large number
of individual customers. Bidding strategies and compensation
mechanisms for LAs were proposed in [16]. A demand side
distributed pinning control strategy for coordinating multiple
LAs to provide frequency regulation services was presented
in [17].

Economic coordination between a DSO and LAs can be
interactive or unilateral. A self-reported baseline mechanism
was developed to minimize the metric of average cost of
DR provision faced by the LA [18]. A DR management
algorithm for TCLs was presented in [19] to reduce investment
and operation cost of renewable energy. In [20], aggregator
behaviors in real-time markets were optimized to maximize
economic income. In [21], consumers were aggregated by
the dispatcher’s department to perform day-ahead economic
scheduling. These studies considered the control economy of
LAs/DSO in detail but omitted interactions between different
participants, which will dampen enthusiasm of some partici-
pants.

Interactions between DSO and LAs involve several factors,
e.g., interactive users, pricing, strategic decision making, and
dynamic operation. Game theory is an effective technique for
describing and solving this multi-agent problem and promoting
a win-win situation [1]. Game theory has been generally
used to study energy sharing [22], and a scalable distributed
mechanism for energy sharing was modeled as a generalized
Nash game in [23] to better invoke prosumer flexibility. A bi-
level model was used in [24] to build an energy sharing frame-
work. Certainly, game theory also achieves good performance
in price making and system scheduling, e.g. trading among

virtual power plants [25]. A noncooperative game was adopted
in [26] and [27] to build appropriate control models for opti-
mizing system operation. A game between the utility service
and consumers was proposed to support the utility in finding
the optimal solution in [28]. Interactions between residential
units and a shared facility controller were studied in [29] to
explore how both entities could benefit from energy trading
with each other and the grid. In [30], a real-time price-based
DR algorithm was proposed to achieve optimal load control
for devices in a facility by forming a virtual electricity-trading
process. Game theory has been preliminarily applied in DR
schemes, but it is usually concentrated between the DSO/LA
and consumers, resulting in computing and communication
difficulties and exposing user privacy. Moreover, it is seldom
used for scheduling DR resources to provide ancillary services.

Optimizing the control economy in the load regulation pro-
cess has yielded some satisfactory results but also raised some
concerns. First, both the DSO and LAs want to maximize their
profits in the load regulation process. Interactions among these
participants should enable both parties to consider their inter-
ests and achieve a dynamic balance. However, most studies
have only considered the optimal available regulation power
(ARP) bid by LAs and ignored the effect of compensation
prices (CPs) offered by the DSO [31]. Second, response of
TCLs controlled by LAs is separate from results obtained in
the scheduling layer; thus, TCLs cannot benefit from optimal
scheduling results [18]. The willingness of TCLs to participate
in load regulation is omitted. Third, randomness is inevitable
in real applications, while uncertainties of renewables and user
response are rarely considered in economic programming [32].
Therefore, a gap may exist between the obtained and actual
optimal scheduling schemes.

To address these concerns, we propose a hierarchical DR
strategy for DSO, LAs, and TCLs to provide load regulation,
where all participants can benefit from the developed mecha-
nism. The main contributions of this paper are as follows:

1) A hierarchical DR framework is established for coordi-
nating DSO, LAs, and TCLs, where TCLs in the executive
layer can directly benefit from results of the scheduling layer,
thus motivating response of the TCLs.

2) Interactions between DSO and LAs are represented as
a Stackelberg game, in which all participants’ profits are
simultaneously maximized under the Stackelberg equilibrium.

3) Two stochastic models considering generation uncer-
tainty, user behavior uncertainty, and operational security
constraints are further developed based on the formulated
Stackelberg game to achieve improved scheduling accuracy.

4) A self-triggering method is proposed for TCLs to provide
regulation power with less communication burden and without
disclosing users’ private information.

The remainder of the paper is organized as follows: Sec-
tion II introduces the proposed interaction strategy architec-
ture and relevant models. Section III describes details of
performing load management among DSO, LAs, and TCLs.
Section IV describes the formulations of two stochastic models
that consider randomness. Section V verifies effectiveness of
the proposed strategy via simulations. Finally, Section VI
discusses the conclusions of this paper.
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II. ARCHITECTURE AND MODEL

A. Framework

Growing penetration of renewable energy aggravates im-
balance between power supply and demand. If flexible gen-
erators are used to supplement such power shortages, their
high running costs will reduce the benefit of the DSO. DR
is a competitive approach for effectively and economically
relieving supply-demand imbalances, in which the DSO can
offer CPs to encourage users to provide regulation power with
lower expenditure. Taking peak-shaving as a typical supply-
demand imbalance scenario, a hierarchical DR strategy is
proposed to relieve power supply-demand imbalance in peak
hours, in which all participants can benefit from this strategy.

Figure 1 depicts the proposed hierarchical DR framework,
including a scheduling layer and an executive layer. In the
scheduling layer, the DSO offers different CP strategies to
different LAs, and then the LA responds to the specified CP
strategy with its own ARP strategy; hence, a Stackelberg game
is formulated to describe interactions between the DSO and
LAs. After iterations, the game finally reaches a Stackelberg
equilibrium (SE), and optimization objectives of all partici-
pants are satisfied. During the game process, randomness in
renewable generation and user response is taken into account,
which helps ensure the obtained scheduling scheme achieves
good performance under most scenarios.

Stage I
DSO profit

maximization

Stage II
LAn expenditure

minimization

Stage II
LAi expenditure

minimization

Stage II
LA1 expenditure

minimization
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Fig. 1. Architecture of the proposed hierarchical control strategy.

The executive layer focuses on interactions between the LA
and the TCLs it controls. When SE is reached, the LA will
generate two external signals (a price signal and a judge signal)
to TCLs. Each TCL determines whether to switch its operation
status according to signals received based on the proposed
self-triggering algorithm. Desired load regulation performance

is achieved through numerous TCL responses. Notably, TCLs
provide only rated power to the LAs instead of providing other
operating information; thus, user privacy will not be revealed.

By linking the executive layer to the scheduling layer, TCLs
can directly benefit from scheduling results and participate
more actively in DR, i.e., user participation is encouraged.

B. Load Model

1) Equivalent Thermal Parameter Model of TCL
The equivalent thermal parameter (ETP) model can approxi-

mate the dominant dynamics of regulated temperature for TCL
and is expressed as (1)–(3) [33], in which the duty cycle of a
TCL is derived in (4) [34].

Ṫin(t) =
1

CR
(To − Tin(t)− s(t)RηP ) (1)

Tmin = Tset − δ/2, Tmax = Tset + δ/2 (2)

s(t) =


0, if s(t− εt) = 1 & Tin(t) ≤ Tmin

1, if s(t− εt) = 0 & Tin(t) ≥ Tmax

s(t− εt)
(3)

τ =
ton

ton + toff
=
To − Tset

PηR
(4)

where Tin(t) is indoor temperature at time t and To is
ambient temperature. C and R are the thermal capacitance and
resistance of the house, respectively. η is load efficiency and P
is rated electrical power. Tset is the thermal setpoint, and Tmax

and Tmin are the upper and lower limits of the temperature
dead-band, respectively. δ is the width of the temperature dead-
band, and τ is the duty-cycle of a TCL. s(t) denotes load
ON/OFF status, and εt is an infinitesimal time delay. ton and
toff are times in which a TCL operates in the “ON” status and
in the “OFF” status during a work cycle, respectively.
2) Regulation Reserve Estimation

When switching operation statuses of different proportional
TCLs, aggregate power of the TCLs changes accordingly to
provided regulation power.

The process of estimating regulation reserve that ith LA
(LAi) can provide is given in [35]. Combined with (4), the
average power of the jth TCL in LAi (TCLi,j), P

i,j
, during

a work cycle can be obtained by (5). According to Jensen’s
inequality, expected aggregate power of the TCLs in the ith LA
at time t, E(P i,tagg), is derived in (6). Notably, power regulation
of TCLs (P i,tadj) should be limited to contribute a maximum
of βi of aggregate power of TCLs due to heterogeneity
concerns [36]. Moreover, the LAi also sets a recommended
value for providing regulation power, P i,tsr . When LAi provides
more regulation power than P i,tsr , user dissatisfaction level
during the regulation process will increase significantly (see
the paragraph above Eq. (12) for a detailed explanation).

P̄ i,j = P i,jτ i,j =
To − T i,jset

ηi,jRi,j
(5)

E
(
P i,tagg

)
= E

Ni,t∑
j=1

To − T i,jset

ηi,jRi,j

 ≥ N i,t
To − T iset,ave

ηiaveR
i
ave

= N i,t
To − T iset,ave

ηiaveR
i
ave

(6)
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P i,tadj = βiN i,t
To − T iset,ave

ηiaveR
i
ave

(7)

P i,tsr = miP i,tadj (8)

where P i,j , τ i,j , T i,jset , ηi,j , and Ri,j represent rated electri-
cal power, duty-cycle, setpoint, load efficiency, and thermal
resistance of TCLi,j , respectively. T iset,ave, Riave, and ηiave

are expectations of the setpoint, thermal resistance, and load
efficiency of TCLs in LAi, respectively. N i,t represents the
number of TCLs controlled by LAi at time t, and mi is a
constant coefficient.

C. System Model

To capture characteristics of the DSO and LAs under
different CP and ARP strategies, they are modeled separately.
1) LA Model

Denote the LA set as I, where |I| = n. Let λiDR = [λi,1DR,

. . . , λi,tDR, . . . , λ
i,T
DR] be the CP strategies the DSO offers to LAi

over the scheduling horizon, where t ∈ T . λDR = {λiDR : i ∈
I} is the set of CP strategies provided by DSO for all LAs over
the scheduling horizon. When LAi receives the CP strategy at
time t (λi,tDR), LAi chooses its optimal ARP strategy, P i,tDR, to
respond to λi,tDR. The utility function of LAi at time t, U i,tLA,
is given by (9).

U i,tLA = FEi,t + DEi,t − RDi,t (9)

where FEi,t, DEi,t, and RDi,t are financial expenditure that
LAi paid to TCLs, penalty that LAi paid to TCLs caused by
user dissatisfaction, and curtailment reward received from the
DSO at time t, respectively.

In FEi,t, the price paid to TCLs is the combination of static
and dynamic prices. Static price λi,ts can ensure participation
of TCLs over the whole scheduling horizon, while dynamic
price (αiλi,tDR)2 is conducive to stimulating enthusiasm of the
TCLs at certain moments with severe supply stress. Dynamic
price is set to be proportional to the square of λi,tDR to
enlarge the effect of dynamic price (i.e., the game results in
the scheduling layer) on users to enhance their enthusiasm.
Moreover, when the power supply-demand situation is under
stress, users are less willing to provide regulation power; at
this time, greater incentives are required to ensure adequate
regulation capacity. To keep static price setting consistent with
power supply-demand situation, λi,ts is set as (11), which is
set to be in line with variation of electricity price.

FEi,t =

[
λi,ts +

(
αiλi,tDR

)2
]
P i,tDR (10)

λi,ts = coeiλtd (11)

where coei and αi are static and dynamic price coefficients,
respectively. Values of coei and αi can be limited according
to the incentive price received by users [37]. λtd is electricity
price at time t.

DEi,t is related to provided ARP capacity. Required reg-
ulation power is provided by the whole TCL cluster, i.e.,
TCLs take turns to provide power reduction, rather than part
of the TCLs provide power reduction all the time. Therefore,
the more ARP the LAi bids, the greater the average impact

on TCLs and the higher the dissatisfaction level of users.
When P i,tDR < P i,tsr , dissatisfaction level of users is acceptable;
otherwise, dissatisfaction level of users will be significantly
increased. Referring to the dissatisfaction function set in [30],
we fit the dissatisfaction function with a quadratic function,
and finally construct DEi,t as (12). Utilizing the fitted curve
instead of the dissatisfaction function mentioned in [30] aims
to reduce difficulty in finding a solution. RDi,t is defined
as (13).

DEi,t = ωi
(
P i,tDR/P

i,t
sr

)2

(12)

RDi,t = λi,tDRP
i,t
DR (13)

where ωi is the weight factor, and value of ωi can be limited
by the cost calculated in [30].

According to the above definitions, the problem for LAi can
be formulated as (14), where (15) restricts the range of ARP
bids for LAi.

min
P i,t

DR

U iLA =

T∑
t=1

U i,tLA (14)

s.t. 0 ≤ P i,tDR < P i,tadj, t ∈ T (15)

where U iLA represents the utility function of LAi over the
scheduling horizon.

According to (15), the feasible strategy set of LAi, ΩiLA,
can be defined as

ΩiLA = {P i,tDR|t ∈ T , (15)} (16)

2) DSO Model
Let P i

DR = [P i,1DR, . . . , P
i,t
DR, . . . , P

i,T
DR ] be the ARP strate-

gies of LAi over the whole control horizon, where t ∈ T .
PDR = {P i

DR : i ∈ I} is the set of ARP strategies of all
LAs over the scheduling horizon. When the DSO responds
to the LAs with P tDR = [λ1,t

DR, . . . , λ
i,t
DR, . . . , λ

n,t
DR], the utility

function of the DSO at time t, U tDSO, is given by (17).

U tDSO = TCRt + TRPt − TECt (17)

where TCRt represents the total change in electricity revenue
of the DSO, TRPt is total reward obtained from peak-shaving,
and TECt is total regulation power purchase cost.

TCRt is associated with two factors: electricity price and
power consumed by users. In previous studies, changes in
electricity prices caused by the introduction of DR to perform
peak-shaving have rarely been considered [38]. Such changes
should not be ignored because magnitude of the load response
on the demand side is not small in terms of peak-shaving and
will be sustained for a period of time. Therefore, alleviation
of supply-demand imbalance may cause a small drop in
electricity price, which in turn reduces electricity revenue. The
change in electricity price is obtained through (18), and TCRt

is finally expressed as (19).

∆λtd =
λtd
γtP td

n∑
i=1

P i,tDR (18)

TCRt =

(
P td −

n∑
i=1

P i,tDR

)(
λtd + ∆λtd

)
− P tdλtd (19)
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where P td represents total load, ∆λtd is change in electricity
price, and γt is the self-elasticity coefficient of electricity price
at time t.

Evaluation of TRPt considers not only peak-shaving per-
formance, but also magnitude of load regulation and supply-
demand imbalance situation. If the reward is based solely
on load regulation magnitude, the DSO will receive the
same reward under different power supply-demand imbalance
scenarios, which is unfair. If the reward is based solely on
peak-shaving performance, then the reward for a large load
reduction at maximum peak may be similar to a small load
reduction at a lower peak, which is also unfair. To seek a
fair and effective reward scheme, a comprehensive TRPt is
formulated in (20). The first term represents level of power
supply-demand imbalance; the second term represents reward
coefficient obtained based on peak-shaving performance rt;
the last term is magnitude of load regulation. A more severe
supply-demand imbalance situation, a better peak-shaving
effect, and a larger provided regulation power will all increase
TRPt relatively. TECt is obtained through (22).

TRPt = rt
λtd

λd,base

(
n∑
i=1

P i,tDR

)2

(20)

rt = µ

/[(
P td −

n∑
i=1

P i,tDR

)/
Pbase

]
(21)

TECt =

n∑
i=1

λi,tDRP
i,t
DR (22)

where µ is the weight factor. Pbase and λd,base represent
average daily load and average electricity price (these data
are collected before DR occurs), respectively.

According to the above definitions, the DSO problem can
be formulated as (23), where (24) and (25) restrict fluctuation
ranges of electricity price and CP provided by the DSO,
respectively. Peak-shaving performance is constrained by (26).

maxλi,t
DR
UDSO =

T∑
t=1

U tDSO (23)

s.t. ∆λd,min ≤ ∆λtd ≤ ∆λd,max (24)

λDR,min ≤ λi,tDR ≤ λDR,max (25)

κminPbase ≤ P td −
n∑
i=1

P i,tDR ≤ κmaxPbase (26)

where UDSO represents the utility function of the DSO over
the scheduling horizon. ∆λd,min and ∆λd,max represent the
lower and upper limits of allowable electricity price fluctuation
range, respectively. λDR,min and λDR,max represent the lower
and upper limits of CP offered by the DSO, respectively. κmin

and κmax are constant coefficients, and these two parameters
are related to the system’s peak, baseline power, and peak-
shaving requirements.

According to (24)–(26), the DSO’s feasible strategy set,
ΩDSO, is defined by

ΩDSO =
{
λi,tDR|i ∈ I, t ∈ T , (24)–(26)

}
(27)

III. LOAD MANAGEMENT AMONG DSO, LAS, AND TCLS

Load management among DSO, LAs, and TCLs is divided
into two parts: a scheduling layer and an executive layer.
The scheduling layer deals with coordination among the DSO
and LAs to find an optimal scheduling scheme to maximize
interests of both parties. The executive layer focuses on rela-
tionships between the LA and the TCLs it controls and aims to
effectively implement the developed scheduling scheme with
less communication burden.

A. Scheduling Layer: Noncooperative Stackelberg Game

The Stackelberg game can be used to study the multilevel
decision-making processes of several independent decision-
makers (i.e., followers) in response to the decision made
by the leading player (leader) of the game [39]. To capture
interactions between the DSO and LAs, a one-leader, N-
follower Stackelberg game is formulated, with the DSO being
the leader and LAs being followers.

1) The DSO announces different CP strategies to different
LAs.

2) Each LA determines its optimal ARP strategy as a
reaction to received CP strategy and sends the developed ARP
strategy to the DSO.

3) The DSO calculates its profit and updates CP strategies
according to feedback ARP strategies.

4) Processes 1) to 3) are repeated until both the DSO
and LAs can implement their optimal strategies under current
conditions, where any change in strategy by either participant
would break the balance.

Such a desired outcome of the game is known as the SE.
In this case, if and only if (28)–(29) are satisfied, the game
can reach SE.

UDSO (λ∗
DR,P

∗
DR) ≥ UDSO

(
λi,tDR,λ

−i,−t∗
DR ,P ∗

DR

)
(28)

U iLA

(
λ∗

DR,P
∗
DR,i

)
≤ U iLA

(
λ∗

DR,P
i,−t∗
DR , P i,tDR

)
(29)

where λ∗
DR and P i∗

DR represent the strategies of the DSO and
LAi when an SE is reached, in which λ∗

DR = [λ−i,−t∗DR , λi,tDR],
P ∗

DR = {P i∗
DR : i ∈ I}, and P i∗

DR = [P i,−t∗
DR , P i,tDR]. Finally,

the game model is revealed as (30)–(32).

max
λi,t
DR,P

i,t
DR

UDSO (30)

s.t. λi,tDR ∈ ΩDSO (31)

P i,tDR ∈ arg min{U iLA : ΩiLA}, ∀i ∈ I (32)

Theorem 1. For the proposed game, an SE exists if the
following conditions are satisfied [40].

1) Strategy set of each participant is nonempty, convex, and
a compact subset of some Euclidean space R.

2) U iLA is continuous and concave in ΩiLA.
3) UDSO is continuous and concave in ΩDSO.
It is obvious from the previous derivation that ΩDSO and

ΩiLA are linear and readily defined as nonempty, convex, and
compact subsets of some Euclidean spaces R. Then, taking the
derivatives of (9) and (17), SE exists because ∂2U i,tLA/∂

2P i,tDR

> 0 and ∂2U tDSO/∂
2λi,tDR = 0. Because utility functions of
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LAs and the DSO are complicated, SE cannot be obtained
directly.

To attain the SE, a distributed algorithm is proposed. This
algorithm is implemented only through exchange of game
information between participants, thereby protecting the pri-
vacy of each participant. In each iteration, each LA will first
choose its optimal response strategy towards the λi,tDR set by
the DSO, and the optimal P i,tDR can be calculated through (33).
Second, when the DSO obtains P i,tDR from all LAs, the DSO
calculates its profit according to. Third, the DSO will update
λi,tDR and resend λi,tDR to LAs again. Iterations continue until
the termination condition is satisfied, i.e., the gap between
two consecutive iterations is less than a specific small value
ε. Therefore, the Stackelberg game can be viewed as reaching
the SE. Details are presented in Algorithm 1. (33)

B. Executive Layer: Response of TCLs to External Signals

When the game reaches an SE, every game participant is
informed of the scheduling scheme {λi,t∗DR , P

i,t∗
DR : i ∈ I} at

time t, and each LA realizes its bid P i,t∗DR through interacting
with TCLs in the executive layer. To maintain the agreement
of the scheduling layer with the executive layer, the scheduling
scheme should directly affect the response of the TCLs,
and communication requirements in the information exchange
process should be minimized. Hence, a self-triggering method

Algorithm 1: Reach the SE in a distributed way
Initialization:

1 The DSO initiates the game by setting
λi,t,0DR = λDR,min, i ∈ I, and sends them to all LAs,
let λi,t∗DR = λi,t,0DR .
Let the first case of ∂U i,tLA/∂P

i,t
DR in (9) be equal to

zero, in which case P i,tDR can be written as:

P i,tDR = −

[
λi,ts + (αiλi,tDR)2 − λi,tDR

] (
P i,tsr

)2
2ωi

. (33)

2 Each LA provides its best response according to (33)
and obtains optimal P i,t,0DR , then LAi sends it to the
DSO.

3 The DSO calculates the initial profit U t,0DSO based on
(23), let U t∗DSO = U t,0DSO.
Iteration

4 for iteration m do
5 DSO updates λi,t,mDR , i ∈ I, and sends them to all

LAs.
6 LAi calculates the corresponding P i,t,mDR according

to (33), and sends P i,t,mDR back to the DSO.
7 DSO calculates the profit U t,mDSO based on (23).
8 if U t,mDSO > U t∗DSO then U t∗DSO = U t,mDSO and

λi,t∗DR = λi,t,mDR .
9 if the termination condition |U t,mDSO − U

t,m−1
DSO | ≤ ε

is satisfied then the SE (λi,t∗DR , P
i,t∗
DR : i ∈ I) is

achieved; else switch to Step 4.
10 end

is proposed to trigger TCL switching, enabling TCLs to inde-
pendently make decisions based on the received signals and
thereby reducing communication and computation pressure
related to the LAs.

LAi calculates the incentive price paid to the TCLs (λi,tLA) at
time t based on the scheduling scheme through (34). Assume
the acquisition price expected by each user is uniformly
distributed in [λiTCL,min, λ

i
TCL,max]. Thus, distribution of λi,tLA

in the acquisition price cluster of users is obtained in (35). LAi

then generates a judgment index ρi,tLA in (36) and sends ρi,tLA

to each TCL.

λi,tLA = λi,ts + αi(λi,t∗DR)2 +
DEi,t

N i,tP i,t∗DR /E(P i,tagg)
(34)

p|λi,j
TCL<λ

i,t
LA

=
λi,tLA − λiTCL,min

λiTCL,max − λiTCL,min

(35)

ρi,tLA =
P i,t∗DR /E(P i,tagg)

p|λi,j
TCL<λ

i,t
LA

(36)

where λi,jTCL represents the acquisition price expected by user
TCLi,j . p|λi,j

TCL<λ
i,t
LA

represents the probability that λi,jTCL is
less than λi,tLA.

Details of the proposed self-triggering method are shown
in Algorithm 2. When TCLi,j receives external signals, it
will generate a state quantity Qi,j . If λi,jTCL < λi,tLA, set
Qi,j = 1; else set Qi,j = 0. If TCLi,j operates in the “ON”
status, si,j = 1; else, si,j = 0. Then, TCLi,j calculates its
response index ρi,jTCL. By comparing ρi,tLA and ρi,jTCL, the TCL
determines whether to change its operation status. Required
regulation power provided on the demand side is achieved
through simultaneous status changing of numerous TCLs.
TCLs sustain current operation statuses for ∆t, where ∆t
denotes time length of an instruction interval. After ∆t, TCLs
will switch to their original operation statuses and receive
external signals again. Then, Algorithm 2 is performed again.

The proposed self-triggering algorithm is executed based on
the scheduling scheme and self-operating statuses of TCLs.
Self-judgment at the TCL terminal can reduce control diffi-
culty and communication pressure related to the LA. More-
over, the TCL only needs to submit consumption power and
expected acquisition price to associated LA; other personal
operating data are stored in the local terminal, which avoids
revealing user privacy during the load reduction process.

Algorithm 2: Self-triggering method

1 TCLi,j receives λi,tLA and ρi,tLA from LAi.
2 if λi,jTCL < λi,tLA then Qi,j = 1; else Qi,j = 0.
3 if TCLi,j operates in “ON” status then si,j = 1; else

si,j = 0.
4 TCLi,j generates a random number ρ between 0 and 1;
5 ρi,jTCL = Qi,jsi,jρ

6 if 0 < ρi,jTCL < ρi,tLA then set si,j = 0; else si,j remains
unchanged.

7 End
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IV. NONCOOPERATIVE STACKELBERG GAME
CONSIDERING RANDOMNESS

The scheduling scheme obtained in Section III can be
applied in the deterministic formulation; however, there are
no perfect deterministic conditions in practice. Many random
factors are inevitable in real life, e.g., randomness in renewable
generation, load forecasting errors (errors incurred during
renewable generation and load forecasting are combined and
defined as “power deviation error”), and user response behav-
ior. Therefore, these random parameters need to be considered
in the Stackelberg game to ensure the obtained scheduling
scheme has good performance in most control scenarios.

A. Stochastic Model Based on Sample Average Approximation
(SAA) Approach

Randomness in power deviation and user response fol-
lows a certain probability distribution. Because probability
distributions are continuous, it is difficult to directly apply
probability distributions of random factors in the proposed
Stackelberg game model. SAA is a two-part method that uses
sampling and deterministic optimization to solve stochastic
programming problems [41]; thus, it is suitable for addressing
the mentioned difficulty. Hence, a stochastic model based on
the SAA approach is proposed (hereinafter referred to as the
“SAA model”).

Expected revenue of the DSO and LAs can be approxi-
mated by the sampling method. Let ζ1, · · · , ζs, · · · , ζS be
S realizations of random scenarios for all uncertainties in
the model, where s ∈ S . A Monte Carlo method is utilized
to generate these different scenarios, taking generation of ζs

as an example, which is defined in (37) and each scenario
includes n+ 1 factors to describe actual variations of relevant
parameters, i.e., power deviation error εsP and user response
error σi,sLA. Under this situation, U tDSO and U i,tLA can be
replaced by Û tDSO and Û i,tLA in (38)–(39), respectively. Û t,sDSO

and Û i,t,sLA represent profit of the DSO and cost of LAi when
faced with an uncertain scenario ζs at time t, respectively;
these values are calculated in (40) and (41) according to (9)
and (17), respectively.

ξs =
[
εsP, σ

1,s
LA, · · · , σ

i,s
LA, · · · , σ

n,s
LA

]
(37)

Û tDSO =
1

S

S∑
s=1

Û t,sDSO (38)

Û i,tLA =
1

S

S∑
s=1

Û i,t,sLA (39)

Û t,sDSO =

[
(1 + εsP)P td −

n∑
i=1

(1 + σi,sLA)P i,tDR

]
(λtd + ∆λtd)

− (1 + εsP)P tdλ
t
d −

n∑
i=1

λi,tDR(1 + σi,sLA)P i,tDR

+
µλtd
λd,base

Pbase

[∑n
i=1(1 + σi,sLA)P i,tDR

]2
(1 + εsP)P td −

∑n
i=1(1 + σi,sLA)P i,tDR

(40)

Û i,t,sLA =
[
λi,ts + αi(λi,tDR)2

]
(1 + σi,sLA)P i,tDR

+ ωi

[
(1 + σi,sLA)P i,tDR

P i,tsr

]2

− λi,tDR(1 + σi,sLA)P i,tDR (41)

This function is an SAA of expected profit/costs of DSO/
LAs. Hence, the original stochastic problem can be refor-
mulated as a deterministic equivalent optimization problem
in (42)–(46). Equation (45) describes the set of uncertain
scenarios ΩS . Equation (46) is a branch flow constraint.

max
λi,t
DR,P

i,t
DR

ÛDSO =

T∑
t=1

Û tDSO (42)

s.t. λi,tDR ∈ ΩDSO (43)

P i,tDR ∈ arg min
{
Û iLA : ΩiLA

}
, ∀i ∈ I (44)

ΩS = {ξs, s ∈ S} (45)

P lomin ≤ P lo ≤ P lomax (46)

where ÛDSO represents the utility function of the DSO over
the scheduling horizon based on the SAA approach. vlmin and
vlmax represent the upper/lower bounds of voltage magnitude
at bus l, respectively. P lomin and P lomax represent the upper/lower
bounds of active power on branch lo, respectively. P lo rep-
resents active power. The probability distribution of related
parameters can be estimated based on historical data.

Note the solution obtained from this SAA approach does not
guarantee optimality in the original problem. Rather, optimal
SAA solutions, when obtained with different sample sets,
provide a statistical inference of a confidence interval of the
actual optimal solution [42].

B. Simplified Stochastic Model Based on Parameter Optimiza-
tion

Although the SAA method is advantageous in terms of
solving stochastic problems, it also faces certain challenges
under some conditions. One challenge involves scenario gener-
ation: finding a relatively small number of samples to properly
represent actual distribution of random factors is difficult [43].
Additionally, SAA optimization is time-consuming when the
sampling number is large and heavy computational pressure
exists. Therefore, combined with the randomness analysis
mentioned above, a simplified stochastic model based on
parameter modification is proposed, which requires a relatively
small number of generated scenarios and greatly reduces
computational burden (hereinafter referred to as “simplified
model”).

The proposed simplified model considers random factors
and only requires two optimizations. First, the original de-
terministic model (30) is optimized to obtain corresponding
results. Second, the simplified model (ŨDSO) is defined in
(47)–(54), which performs optimization based on results of the
first optimization and then obtains the final scheduling scheme.
P td is modified to adapt to various random factors in (50),
and (51) calculates power fluctuation caused by randomness in
user response. Equation (52) derives power fluctuation caused
by randomness of renewable generation and load forecasting
error. Calculation of Ũ tDSO is modified as (53). Branch flow
constraint is listed in (54).
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max
λi,t
DR,P

i,t
DR

ŨDSO =

T∑
t=1

Ũ tDSO (47)

s.t. λi,tDR ∈ ΩDSO (48)

P i,tDR ∈ arg min{U iLA : ΩiLA}, ∀i ∈ I (49)

P t
′

d = P td + Ct1 + Ct2 (50)

Ct1 =

n∑
i=1

(1− σi,tLA)P i,t∗DR,o (51)

Ct2 = (P̄ tre − P tre) + (P̄ tL − P tL) (52)

Ũ tDSO =

(
P t

′

d −
n∑
i=1

P i,tDR

)
(λtd + ∆λtd)− P t

′

d λ
t
d

+
µλtd

(∑n
i=1 P

i,t
DR

)2

λd,base

(
P t

′
d −

∑n
i=1 P

i,t
DR

)
/Pbase

−
n∑
i=1

λi,tDRP
i,t
DR (53)

P lomin ≤ P lo ≤ P lomax (54)

where Ũ tDSO represents profit of the DSO with modified P td
at time t. P t

′

d represents modified P td, and Ct1 and Ct2 are
power correction terms related to randomness in user response,
and in renewable generation and load forecasting error at
time t, respectively. P i,t∗DR,o is the original bid ARP by LAi

obtained according to model. P
t

re and P
t

L are mean values of
renewable generation and load in interval forecasting at time t,
respectively. P tre and P tL are forecasted renewable generation
and load at time t, respectively.

The reason for modifying P td instead of other parameters is
the randomness in renewable generation, load forecasting, and
user response is reflected in the form of power variation, and
power variation is directly reflected in P td. When P td changes,
game results change accordingly. Moreover, random factors
have a greater impact on the DSO, while P td is one of the most
important external parameters for DSO profit. Therefore, P td
is chosen for modification.

V. CASE STUDY

In this section, simulations are conducted in a modified
IEEE-24 bus system with high PV penetration with one DSO
and three LAs (each of which contains 5,000∼10,000 TCLs)
to verify utility of the proposed hierarchical DR framework
for providing load regulation. An LA aggregates numerous
TCLs and sells ARP to the DSO according to the CP strategy
given by the DSO, where the time resolution for the selling
action is 0.5 h. Table I presents parameters of the LAs, and
µ = 12.5. Parameters of TCLs are taken from [9]. Load
profile and electricity price data are obtained from New South
Wales, Australia. PV generation data is collected from a power
plant in Lianyungang, China. Power fluctuation disturbance
is assumed to be caused by renewable generation and load
forecasting errors, and user response willingness ranges from
[0.895, 1]. Notably, parameter values involved are specific to
this study and may vary in other environments; however, this

TABLE I
PARAMETERS OF THE LAS

Parameters coe α m ω β
LA1 0.2 0.04 0.55 75 0.35
LA2 0.25 0.03 0.52 75 0.32
LA3 0.3 0.06 0.61 75 0.38

will not distort analysis of results obtained. Calculation and
verification are performed in MATLAB R2016a.

A. Results of Applying the Proposed Control Framework

Figure 2 depicts peak-shaving performance and intuitively
shows ARP strategies of the LAs that respond to the CP
strategy offered by the DSO. In theory, LA3 should contribute
least to load regulation because it offers the highest incentive
price to the TCLs. However, that is not the case: differences
among the ARPs provided by the LAs are not substantial.
The penalty function avoids simultaneously triggering a large
number of TCLs in the same cluster to protect user satisfaction
level and guarantee heterogeneity of TCLs.

Figure 3 shows the CPs offered by the DSO over the
scheduling horizon and compares the original electricity price
with real electricity price after peak-shaving. It can be ob-
served that CPs in different periods vary greatly. Additionally,
applying load regulation during peak hours reduces supply-
demand imbalance pressure imposed on the system, which
leads to a slight decrease in real electricity price, especially
during some periods with large load regulation amounts.
Therefore, whether to consider impact of load regulation on
electricity price depends on the magnitude and duration of
regulation. Fig. 4 compares profits of the DSO and LAs in
different periods. To maintain the balance of the figure, actual
DSO revenue value is the histogram value multiplied by 5.

Taking the iteration process at 19:00 as an example, Fig. 5
illustrates the iteration process by which the formulated Stack-
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Fig. 2. Peak-shaving performance and LA output over the scheduling horizon.
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Fig. 3. CPs offered by the DSO over the scheduling horizon.
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Fig. 4. Profits among the DSO and LAs over the scheduling horizon.
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Fig. 5. Iteration process for converging to the Stackelberg equilibrium.
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Fig. 6. Verification of the self-triggering method for the TCLs under LA1.

elberg game converges to the SE. The SE is reached at the 16th
iteration, which means that profit of the DSO cannot increase
any further.

Figure 6 verifies the implementation effect of the proposed
self-triggering method. A TCL receives only two external
signals from the LA, and the judgment process is executed
internally according to its operation status. Comparing im-
plementation effects of TCLs controlled by LA1, the error
between the number of TCLs requiring switching and the
number of triggered TCLs is within [−5%, 5%], which shows
the proposed method has good control effect. Moreover, this
method enables responses of TCLs to be directly related
to the scheduling scheme, which can effectively implement
scheduling results and prevent separation between theoretical
scheduling and practical implementation. In addition, the TCL
does not need to upload operating information to the LA; thus,
user privacy is protected.

B. Comparisons

1) With vs. Without Considering Interactions Between the
DSO and LAs

Comparison is implemented from two perspectives: 1) DSO
sets the CPs directly, and LAs respond to these CPs (here-

inafter referred to as “Strategy 1”); and 2) LAs report regu-
lation power capacities they can offer and the corresponding
offering price, i.e., CPs, and the DSO determines the ARP
strategies purchased from each LA (hereinafter referred to as
“Strategy 2”).
Perspective 1. Figures 7 and 8 do not consider interactions
between DSO and LAs; instead, the DSO sets the CPs di-
rectly. The CPs are set relative to electricity price, where the
coefficients are calculated according to the mean of the ratio
between CP and electricity price in Fig. 3. Fig. 7 shows peak-
shaving performance, in which overcontrol occurs when these
CP strategies are adopted. Not only is it a waste of regulation
resources, but it also makes no sense to overcontrol in this
context.
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Fig. 7. Peak-shaving performance and LA output over the scheduling horizon
without considering interactions between the DSO and LAs (Perspective 1).
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Fig. 8. Comparison of profits among the DSO and LAs without considering
the interactions between the DSO and LAs (Perspective 1).

Figure 8 shows profits of the DSO and LAs under the given
CP strategies. In Fig. 8, profits of LAs are larger than those
in Fig. 4, while profits of the DSO are much smaller than
those in Fig. 4. Because there is no coordination among LAs,
they will maximize their profits by selling more regulation
resources without considering the impact of such behavior on
peak-shaving. If interactions between the DSO and LAs are not
considered, the DSO can hardly obtain optimal CP strategies;
instead, strategies are formulated based on experience. Then,
the LAs tend to maximize their gains based on known CP
strategies. During this process, regulation effect is neglected,
which is why overcontrol/lack of control occurs. Moreover,
renewable generation makes the load profile more flexible;
hence, reference value of previous CP strategies is reduced,
so this case requires more targeted formulated CP and ARP
strategies.
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Perspective 2. Regulation power capacity each LA can offer
is set to be the same as in the Stackelberg game; offering
prices, i.e., the CPs, of the LAs are set from 10 to 100
with a resolution interval of 10, and CPs are set randomly
in each small resolution interval. Taking profits obtained at
19:00 as an observation object, Fig. 9 compares profits of
all participants under different set CPs. Compared to profits
obtained from the proposed strategy, there are always two or
more participants in Strategy 2 whose profits are smaller than
those obtained in the proposed strategy. Heterogeneity of some
LAs is significantly altered, which will seriously affect the
ability of LAs to provide stable regulation power. Optimal CP
set by an LA depends on many factors and is not fixed. If
an LA is priced based only on partial factors, the purchase
decision is left to the DSO; the LA then tends to set CP as
high as possible, while the DSO will choose LAs with lower
CPs to buy in bulk. Finally, profits of the DSO will be affected,
as will regulation ability of LAs with lower CPs.
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Fig. 9. Comparison of profits among the DSO and LAs without considering
the interactions between the DSO and LAs (Perspective 2).

CP that an LA offers/wants is related to its control cost and
referred to the CPs offered by other LAs. To obtain satisfactory
results for everyone, it may be more appropriate to realize a
balance through a game than to develop strategies from only
one side.
2) With vs. Without Considering Electricity Price Variation

In Fig. 10, the noncooperative Stackelberg game is adopted,
but effects of peak-shaving on electricity prices are neglected.
Fig. 10 shows a large gap is produced between scheduled profit
and actual profit if variation of electricity price is neglected
during scheduling. Moreover, actual profit of the DSO with-
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Fig. 10. Comparison of DSO profits obtained with/without considering
electricity price variation vs. the actual profits in implementation.

out considering electricity price variation differs from profit
obtained when considering electricity price variation. Hence,
there are two kinds of errors between results obtained without
considering electricity price variation and optimal results,
which indicates that not taking electricity price variation into
account has a great impact on scheduling accuracy.

Figure 11 shows electricity price before and after peak-
shaving. In some time slots, electricity price changes cannot be
ignored, which demonstrates taking electricity price variation
into account in scheduling is reasonable.
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Fig. 11. Comparison of electricity price. without considering electricity price
variation vs. actual electricity price in implementation.

3) With vs. Without Considering Random Factors
It is important the obtained CP and ARP strategies also

perform well when facing small power fluctuations. In this
case, random factors in actual execution cannot be ignored
during scheduling. We use “fitness” to describe this situation;
if the CP and ARP strategies can provide good economic and
control effects in most fluctuation scenarios, we think these
strategies have high fitness. This section compares strategies
obtained from different models and applies them in 800
randomly generated scenarios to compare their application
performance. Different cases are listed in Table II.

TABLE II
CASE DEFINITIONS

Case Description
Case 1 Each scenario performs a unique noncooperative Stackelberg

game and obtains the optimal CP and ARP strategies
Case 2 Strategies acquired in the deterministic noncooperative

Stackelberg game model are applied in 800 scenarios
Case 3 Strategies acquired in the SAA stochastic model are applied

in 800 scenarios
Case 4 Strategies acquired in the simplified stochastic model are

applied in 800 scenarios

Figure 12 compares peak-shaving performance achieved
with vs. without considering random factors (SAA model
vs. original model) in one generated scenario. Peak-shaving
performance achieved when considering random factors is
better because corresponding strategies are obtained based on a
comprehensive consideration of numerous generated scenarios,
which have better fitness.

Figure 13 compares average profits of the DSO among
Cases 1–4 (simulation background is power deviation, which
ranges from [0.99, 1.05]×Pd). Because Case 1 formulates cor-
responding optimal strategies for each scenario, it is regarded
as the optimal solution. Unquestionably, the deterministic
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Fig. 12. Comparison of peak-shaving performance achieved with vs. without
considering random factors.
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Fig. 13. Comparison of the DSO profits obtained under different cases.

game model exhibits the worst fitness. The CP and ARP
strategies acquired from the SAA stochastic model show good
fitness under various scenarios, with the closest profits to
those of Case 1. A sufficient number of random scenarios are
considered in Case 3 to make obtained results approach the
optimal solution as closely as possible. However, optimization
time consumed to obtain these strategies is relatively long.
Average profits of the DSO based on acquired CP and ARP
strategies from the simplified stochastic model are in the mid-
dle because this model only considers mean values of random
factors, which is not especially accurate. This proposed sim-
plified stochastic model sacrifices partial calculation accuracy
to reduce computational burden. The model is suitable for
situations in which accuracy requirements are relatively low,
and generation of multiple typical scenarios is difficult.

Taking the CP and ARP strategies at 19:00 as a detailed
example to perform a comparison, Figs. 14(a)–(d) compare
profits of the DSO and LAs obtained from Cases 2–4 under
different scenarios (simulation background is power deviation,
which ranges from [0.99, 1.05] × Pd). Profits in Case 3 >
profits in Case 4 > profits in Case 2. This result verifies
correctness of the proposed stochastic models; the CP and
ARP strategies acquired from the SAA stochastic model are
close to the optimal solution; hence, all participants have
the highest profits. Profits obtained in Case 4 under different
scenarios are also higher than produced by the deterministic
model because random factors are considered.

Figures 15 and 16 compare the CP and ARP strategies
derived from Cases 1–4, respectively, in which the spatial
distribution of strategies is shown in detail. The purple dot
represents the strategy obtained in Case 1. The green dot,
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red dot, and black dot represent optimal results obtained
from Cases 2, 3, 4, respectively. Strategies obtained from
Cases 3 and 4 are located in the center of the purple dots.
This phenomenon indicates these strategies can perform well
in most scenarios. Hence, their average profits in different
scenarios are high. When faced with random factors, the SAA
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Fig. 16. Comparison of ARP strategies under different cases.

model and simplified model can be used to reduce scheduling
errors according to different regulation requirements.

VI. CONCLUSION

A hierarchical DR framework is proposed to coordinate
DSO, LAs, and TCLs to provide load regulation, where the
optimal CP and ARP strategies of the DSO and LAs are
formulated based on considering random factors.

In the scheduling layer, interactions among the CP and ARP
strategies are investigated. The proposed Stackelberg game
model converges to an equilibrium solution, and both the DSO
and LAs can maximize their profits. Simulation results show
considering interactions between the DSO and LAs is benefi-
cial to realize a win-win situation for both parties. Including
consideration of electricity price variation into the formulation
of the DSO utility function helps improve scheduling accuracy.
Furthermore, the two presented stochastic models achieve
good performance in most generated scenarios. The SAA
model has an advantage in terms of scheduling accuracy, as
it is closest to actual optimal results. The simplified model
is superior in terms of computational speed, but its error is
slightly larger than of the SAA model.

In the executive layer, the proposed self-triggering method
enables TCLs to provide required regulation power, in which
response action is closely related to the scheduling scheme and
thus stimulates participation of TCLs without revealing user
privacy. Simulation results illustrate that TCLs can actively
provide accurate regulation performance.
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framework for multiperiod-multicompany demand response management
in the smart grid,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 3, pp. 1019–1034, May 2021.

[28] Q. Cui, X. L. Wang, X. F. Wang, and Y. Zhang, “Residential appli-
ances direct load control in real-time using cooperative game,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 226–233, Jan. 2016.

[29] W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Y. Yang, and
H. V. Poor, “Three-party energy management with distributed energy
resources in smart grid,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 4, pp. 2487–2498, Apr. 2015.

[30] M. M. Yu and S. H. Hong, “A real-time demand-response algorithm for
smart grids: a stackelberg game approach,” IEEE Transactions on Smart
Grid, vol. 7, no. 2, pp. 879–888, Mar. 2016.

[31] P. Ju, T. Y. Jiang, H. Y. Li, C. Wang, and J. Z. Liu, “Hierarchical control
of air-conditioning loads for flexible demand response in the short term,”
IEEE Access, vol. 7, pp. 184611–184621, Dec. 2019.

[32] Y. K. Renani, M. Ehsan, and M. Shahidehpour, “Optimal transactive
market operations with distribution system operators,” IEEE Transac-
tions on Smart Grid, vol. 9, no. 6, pp. 6692–6701, Nov. 2018.

[33] S. Bashash and H. K. Fathy, “Modeling and control of aggregate air
conditioning loads for robust renewable power management,” IEEE
Transactions on Control Systems Technology, vol. 21, no. 4, pp. 1318–
1327, Jul. 2013.

[34] N. Mahdavi, J. H. Braslavsky, and C. Perfumo, “Mapping the effect
of ambient temperature on the power demand of populations of air
conditioners,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1540–
1550, May 2018.

[35] P. Ju, T. Y. Jiang, C. Y. Chung, Y. Z. Gong, and H. Q. Zhou, “Incor-
porating demand response in two-stage frequency emergency control,”
International Journal of Electrical Power & Energy Systems, vol. 131,
pp. 107122, Oct. 2021.

[36] S. Jin, A. Botterud, and S. M. Ryan, “Impact of demand response
on thermal generation investment with high wind penetration,” IEEE
Transactions on Smart Grid, vol. 4, no. 4, pp. 2374–2383, Dec. 2013.

[37] P. Settlement. (2021, Jun.). Credit overview and supplement to the
PJM credit risk management policy. [Online]. Available: https://www.
readkong.com/page/credit-overview-and-supplement-to-the-pjm-credit
-risk-7628547.

[38] M. Song, W. Sun, Y. F. Wang, M. Shahidehpour, Z. Y. Li, and C. W. Gao,
“Hierarchical scheduling of aggregated TCL flexibility for transactive
energy in power systems,” IEEE Transactions on Smart Grid, vol. 11,
no. 3, pp. 2452–2463, May 2020.

[39] Q. Peng, X. L. Wang, Y. Kuang, Y. F. Wang, H. Y. Zhao, Z. C. Wang,
and J. H. Lyu, “Hybrid energy sharing mechanism for integrated energy

systems based on the Stackelberg game,” CSEE Journal of Power and
Energy Systems, vol. 7, no. 5, pp. 911–921, Sep. 2021.

[40] L. Ma, N. Liu, J. H. Zhang, W. Tushar, and C. Yuen, “Energy man-
agement for joint operation of CHP and PV prosumers inside a grid-
connected microgrid: a game theoretic approach,” IEEE Transactions on
Industrial Informatics, vol. 12, no. 5, pp. 1930–1942, Oct. 2016.

[41] L. A. Hannah. (2014, Apr.). Stochastic optimization. [Online]. Available:
http://www.stat.columbia.edu/∼liam/teaching/compstat-spr14/lauren-not
es.pdf.

[42] P. Jirutitijaroen and C. Singh, “Reliability constrained multi-area ad-
equacy planning using stochastic programming with sample-average
approximations,” IEEE Transactions on Power Systems, vol. 23, no. 2,
pp. 504–513, May 2008.

[43] Z. H. Ding and W. J. Lee, “A stochastic microgrid operation scheme to
balance between system reliability and greenhouse gas emission,” IEEE
Transactions on Industry Applications, vol. 52, no. 2, pp. 1157–1166,
Mar./Apr. 2016.

Tingyu Jiang received B.S. and Ph.D degrees
in Electrical Engineering from Hohai University,
Jiangsu, China, in 2017 and 2022. She is currently a
Lecturer of Energy and Electrical Engineering Col-
lege, Hohai University, Nanjing, China. Her research
interests include demand response, ancillary service
market, power systems scheduling, and smart grid
modeling and control.

Ping Ju received B.S. and M.S. degrees in Electri-
cal Engineering from Southeast University, Nanjing,
China, in 1982 and 1985, respectively, and a Ph.D.
degree in Electrical Engineering from Zhejiang Uni-
versity, Hangzhou, China. From 1994 to 1995, he
was an Alexander-von Humboldt Fellow with the
University of Dortmund, Germany. He is currently
a Professor of Electrical Engineering with Hohai
University, Nanjing, China, and Zhejiang University.
His research interests include modeling and control
of power system with integration of renewable gen-

eration.

C. Y. Chung received B.Eng. (with First Class
Honors) and Ph.D. degrees in Electrical Engineering
from The Hong Kong Polytechnic University, Hong
Kong, China, in 1995 and 1999, respectively. He
is currently a Professor of Department of Electri-
cal Engineering in City University of Hong Kong,
China. His research interests include smart grid
technologies, renewable energy, power system sta-
bility/control, planning and operation, computational
intelligence applications, power markets and electric
vehicle charging. Dr. Chung is a Senior Editor of

“IEEE Transactions on Power Systems”, a Consulting Editor of “IEEE Trans-
actions on Sustainable Energy”, a Vice Editor-in-Chief of “Journal of Modern
Power Systems and Clean Energy”, a Subject Editor of “IET Generation,
Transmission & Distribution”, an Editor of “IEEE Power Engineering Letters”,
and an Editorial Board Member of “Protection and Control of Modern Power
Systems”.

Yuzhong Gong received B.S. and Ph.D. degrees
in Electrical Engineering from Zhejiang University
of Technology and Zhejiang University, Hangzhou,
China, in 2010 and 2015, respectively. He is cur-
rently a Senior Research Associate in the Depart-
ment of Electrical and Computer Engineering at the
University of Saskatchewan, Saskatoon, SK, Canada.
His research interests include power systems plan-
ning and operation, renewable energy integration,
and energy storage systems.

https://www.readkong.com/page/credit-overview-and-supplement-to-the-pjm-credit-risk-7628547
https://www.readkong.com/page/credit-overview-and-supplement-to-the-pjm-credit-risk-7628547
https://www.readkong.com/page/credit-overview-and-supplement-to-the-pjm-credit-risk-7628547
http://www.stat.columbia.edu/~liam/teaching/compstat-spr14/lauren-notes.pdf
http://www.stat.columbia.edu/~liam/teaching/compstat-spr14/lauren-notes.pdf

	Indices and Sets
	Variables
	Introduction
	Architecture and Model
	Framework
	Load Model
	Equivalent Thermal Parameter Model of TCL
	Regulation Reserve Estimation

	System Model
	LA Model
	DSO Model


	Load Management among DSO, LAs, and TCLs
	Scheduling Layer: Noncooperative Stackelberg Game
	Executive Layer: Response of TCLs to External Signals

	Noncooperative Stackelberg Game Considering Randomness
	Stochastic Model Based on Sample Average Approximation (SAA) Approach
	Simplified Stochastic Model Based on Parameter Optimization

	Case Study
	Results of Applying the Proposed Control Framework
	Comparisons
	With vs. Without Considering Interactions Between the DSO and LAs
	With vs. Without Considering Electricity Price Variation
	With vs. Without Considering Random Factors


	Conclusion
	References
	Biographies
	Tingyu Jiang
	Ping Ju
	C. Y. Chung
	Yuzhong Gong


